BANE VASIĆ
Error Correction Laboratory: Director. Coding theory and applications to quantum computing and communications.
LDPC Codes: Pioneering work on structured low-density parity check (LDPC) error correcting codes and iterative decoders. Designed codes and decoders with best error-floor performance known today.
Codelucida: Founder and Chief Scientific Officer of Codelucida, a company developing error correction coding solutions for flash memories.
Bell Labs: An inventor of the soft error-event decoding algorithm, and the key architect of a detector/decoder for Bell Labs data storage read channel chips which were regarded as the best in industry.
IEEE Fellow – For contributions to coding theory and its application in data storage systems and optical communications.
Kenneth Von Behren Chair da Vinci Fellow
Fermilab SQMS Center Quantum Error Correction Group Lead
NASA – Strategic University Partnership
Chair of the Data Storage Technical Group – IEEE Communications Society
Serbian Academy of Sciences and Arts Scholarship
2019 Best of Show Award for the Most Innovative Flash Memory Technology for Codelucida – Flash Memory Summit
2018 I-Squared Startup of the Year for Codelucida – Tech Launch Arizona
Institute of Advanced Study Grant – Universite Paris Seine
2017 Arizona Innovation Challenge Award for Codelucida– Arizona Commerce Authority
The research in the Error Correction Laboratory is in the general area of information theory, more specifically in channel coding, or error correction coding theory. Our specialty is so-called modern coding theory and includes low-density parity check codes and iterative decoding algorithms. We design and analyze classical and quantum codes and decoders for both communications and computing systems.
ECL Job Openings
The Error Correction Laboratory is looking for multiple PhD candidates to work on the projects funded by NASA, Fermi National Accelerator Laboratory, and National Science Foundation. Topic of research is quantum low-density parity check codes.
Strong background in coding theory, probability theory and algebra is a must. Master of Science in Electrical and Computer Engineering is required, but exceptional candidates with Bachelors of Science in Electrical Engineering who qualify for the University of Arizona direct Ph.D. program will be also considered.